
Deep Robot Localization
Nathan Hatch Gavin Parpart Daniel Starikov

nhatch2|gparpart|starikov@cs.washington.edu

ABSTRACT
Given an occupancy grid and a one-dimensional depth scan cen-
tered around a robot, we wish to localize the robot within the grid
using deep learning. Several network architectures are proposed,
including a regression model and a classification model. Qualitative
results show that none of these approaches performs very well.

1 INTRODUCTION
The typical setup for a robot localization problem is shown in Fig. 1.
The robot is in an environment represented as a binary occupancy
grid. It has sensor information in the form of an egocentric laser
depth scan with limited angular resolution, distance resolution, and
field of view. The task is to determine the robot’s pose (x ,y,θ) given
only the occupancy grid and the depth scan.

One approach, described in detail in Section 3, is to discretize
the configuration space, simulate a laser scan from each pose, and
choose the pose that best matches the given scan. However, this
brute-force approach is expensive—it may take a second or two to
estimate the pose for a single frame of data. Hence, we are interested
in faster methods for robot localization.

Given the recent popularity of deep learning in the robotics
community, we decided to try to use neural networks to solve this
problem. We experimented with a number of network architec-
tures, described in detail in Section 4. For evaluations, we compared
the qualitative performance of these networks against the brute-
force force approach of Section 3. We find that while the network
predictions are sometimes reasonable, they are not very robust.
We discuss potential reasons for this and suggest future research
directions in Section 6.

2 DATASET GENERATION
The set of 96 occupancy grids used for training and testing were pro-
vided by the instructors of the University of Washington Robotics
(CSE 571) Spring 2020 course [website].

We augment this dataset by generating randomly cropped maps
around the robot and laser scan data. First, a robot pose and associ-
ated laser scan is sampled from the unoccupied space of a randomly
chosen map. Our laser scanner uses 40 laser rays with a range of
M = 2meters and an FOV of 240°. We then crop the map to a square
of side length 4M randomly such that the location of the robot is
uniform within the central square of side length 2M . This ensures
that our models are not just learning to predict the center of the
map. The resolution is chosen so that the cropped occupancy grid
is 40 by 40 pixels.

The dataset can be stored on disk or run in online mode where
datapoints are generated on the fly as needed. This avoids consum-
ing disk space with training data and enables the use of arbitrarily
large datasets.

We partition the set of maps into 61 train, 15 validation, and
20 testing maps. By splitting the source maps used for dataset

Figure 1: Example localization problem.

generation, we are able to test that our model generalizes to new
maps.

For more details, please refer to our code, available [here]. For
the purposes of input to our neural network architectures, the laser
scan is represented as a one-dimensional vector of depth values.

3 BRUTE-FORCE BAYESIAN LOCALIZATION
The Bayesian approach to localization proceeds as follows. Suppose
we can compute a probability density function (PDF) for the laser
scan s , given a robot pose (x ,y,θ) and an occupancy gridm:

p(s |x ,y,θ ,m)

Suppose we also have a prior p(x ,y,θ |m) over robot poses. Then
we can compute the posterior

p(x ,y,θ |s,m) ∝ p(s |x ,y,θ ,m)p(x ,y,θ |m) (1)
which gives a distribution over robot poses according to how well
they match the laser scan with the occupancy grid. To calculate the
proportionality constant, we can discretize the configuration space,
calculate (1) for each pose, and then normalize.

For the experiments described below, we used the sensor model

p(s |x ,y,θ ,m) =

B∏
i=1

(
εN (si |s

′
i ,σ

2) + (1 − ε)
1
M

)
where s ′ is the simulated laser scan for the given (x ,y,θ ,m) pose
andmap,B is the number of beams per laser scan,M is themaximum
range of a laser scan, ε ∈ [0, 1] is a mixture weight, and N (·|µ,σ 2) is
a one-dimensional normal PDF with mean µ and variance σ 2. Our
experiments used ε = 0.2 and σ = 3 pixels. Some sample posterior
distributions are visualized in the top half of Figure 3.

4 NEURAL NETWORK ARCHITECTURES
We implemented two network architectures: a regressionmodel and
a classificationmodel. For the classificationmodel, we experimented
with two training objectives: cross-entropy loss and KL-divergence.

Both models share a “backbone” consisting of six 2D convolu-
tions on the map and four 1D convolutions on the laser scan, with

https://courses.cs.washington.edu/courses/cse571/20sp/
https://gitlab.cs.washington.edu/starikov/571-project-2

Nathan Hatch Gavin Parpart Daniel Starikov

ReLU activations, batch normalization, and max pools every 2 con-
volutions. The laser scan features are flattened and periodically
concatenated with the map features at each 2D position.

After the backbone, our regression architecture has two fully
connected layers with final output dimension 4. Our classifica-
tion architecture instead applies two transpose convolutions to
increase the resolution, with skip connections back to the earlier
high-resolution layers of the backbone, followed by two 1x1 convo-
lutions.

The training objective for the regression model is mean square
error (MSE) with respect to the pose (x ,y,θ) originally used to
generate the laser scan. To address wrap-around for θ and balance
the units of θ against those of (x ,y), we represent pose targets as(
x ,y, 5 sin(θ), 5 cos(θ)

)
, where x ,y are measured in pixels.

The KL-divergence objective (KL) for the classification model is∑
x ∈X P(x) log

(
P (x)
Q (x)

)
where Q(x) is the classifier prediction and

P(x) is the Bayes prediction (see Section 3). The cross-entropy
objective (CE) is the same, except that P(x) is a one-hot distribution
with all weight on the pose originally used to generate the scan.
The KL objective provides more training signal but is much more
expensive to calculate.

We optimize the networks with Adam [1] on the training maps.
We use batch size 32, initial learning rate 0.0001, and gradient
clipping with norm 100. Since we generate our data online, we
do not have training epochs in the normal sense, but we run the
optimization for 1000 “epochs” of 2048 examples each.1 This takes
about six hours on an Nvidia GPU.

5 RESULTS
For qualitative evaluations, we compare the predictions of our
networks against the brute-force Bayesian approach described in
Section 3. See Figures 2 and 3. More qualitative results may be seen
in the accompanying video presentation [video] [slides].

The regression model sometimes predicts poses inside of obsta-
cles. Although the classification model avoids this, it still does not
understand the geometry of the problem, often predicting poses for
which the given laser scan does not make sense. To address this,
we simplified the classification model to predict only the robot’s
(x ,y) location, ignoring the heading θ (right column of Figure 3).
This seems to perform best out of all of our models, but still it often
makes nonsensical predictions. Additional results from this model
may be seen in Appendix A.

Given our poor qualitative results, we did not spend much time
on quantitative evaluation. We trained the best-performing of each
kind of architecture once to completion. The results on validation
data are shown in Table 1.

6 DISCUSSION
This project has shown that it is difficult to train neural networks
to solve problems that involve geometry. One potential direction
for future work could be to use 3D transpose convolutions. Using
2D convolutions is helpful to preserve x ,y locality, but this problem
has θ locality as well.

1For the KL objective, given the computational cost, we precalculate an offline dataset
of only 610 examples.

Figure 2: Qualitative regression results. Scan centered around
ground truth pose.

Figure 3: Qualitative classification results. Bayes prediction
on top, neural net bottom. Poses are represented as triangles. Hue
encodes θ , and alpha encodes the predicted weight of the pose. The
scan is represented by red “+” marks centered around the most
likely pose. Left: CE objective. Center: KL objective. Right: CE
objective, x ,y only.

Table 1: Quantitative Results

Initial loss Final loss (1000 epochs)
Regressor (MSE) 45.04 19.73
Classifier (CE) 8.60 5.94
Classifier, x ,y only (CE) 5.43 1.86
Classifier (KL) 4.02 2.10

Another strategy to improve performance could be to change the
representation of the laser scan. Rather than using a 1D vector of
depths, we could render the laser beams into a 2D occupancy grid.
This would have the advantage that the model might generalize to
other laser scanners with differing angular resolutions.

In general, we found that mixing the laser and occupancy data
earlier in the network improved performance, as did using deeper
networks with more skip connections. Continuing along these lines,
we might discover an architecture that solves localization more
quickly than, and as accurately as, the Bayesian approach.

https://drive.google.com/file/d/12Knvx9bvXCaQC0p7mIxBDIulOJSCwKNB/view?usp=sharing
https://docs.google.com/presentation/d/1KFFPJaoL5LctJbqo79rDn1qVgsLjKHGr5tkprjcoeVQ/edit#slide=id.g899a47349a_3_63

Deep Robot Localization

REFERENCES
[1] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. (2014). arXiv:cs.LG/1412.6980

A MORE QUALITATIVE RESULTS
Here are some more results from our best-performing model, the classifier which predicts only (x ,y) location. As in Figure 3, the top row
shows the Bayesian prediction, and the bottom row shows the neural network prediction. The bottom-right shows an extreme failure case.

https://arxiv.org/abs/cs.LG/1412.6980

	Abstract
	1 Introduction
	2 Dataset Generation
	3 Brute-Force Bayesian Localization
	4 Neural Network Architectures
	5 Results
	6 Discussion
	References
	A More Qualitative Results

