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Relative Pose Estimation

Finding relative pose between two calibrated cameras is a fundamental prob-
lem in simultaneous localization and mapping (SLAM), visual odometry (VO)
and structure from motion (SfM). Relative pose estimation of a moving cam-
era consists of finding the camera pose (i.e. rotation and translation) with
respect to the coordinate frame of a previous position. What is interesting
in the context of ECE 8823 is that it can be formulated as an optimization
problem and solved using convex relaxation.

Figure 1 shows the basic two-view camera setup. If p and p′ are two image
points looking at the same world point P , then the bearing vectors f = p

||p||

and f ′ = p′

||p′|| satisfy the coplanarity constraint

fEf ′ = 0, (1)

where E is the essential matrix defined by

E = [t]×R

where [t]× is the cross product matrix formed by vector t,

[t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0



Figure 1: The relative pose problem. {f , f ′} are the bearing vectors.
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Essential Matrix Manifold

We denote the essential matrix E as

E =

e1e2
e3

 =

e11 e12 e13
e21 e22 e23
e31 e32 e33


and its corresponding vector

e = vec(E) =
[
e11 e21 e31 e12 e22 e32 e13 e23 e33

]T
Then the set of valid essential matrices

ME , {E = [t]×R, | R ∈ SO(3), t ∈ S2}

is called the normalised essential matrix manifold. This turns out to be equal
to the set [2]

{E | EET = [t]×[t]T× for some t satisfying tT t = 1}

Minimising the Error

Equation 1 holds for noise-free cases, but the equality will not strictly hold
when measurement noise exists. Instead, [1] pursue the optimal pose by
minimising the algebraic error

min
E∈ME

N∑
i=1

(fTi Ef
′
i)

2. (2)

By writing f i = vec(f ′if
T
i ) and observing that fTi Ef

′
i = eTf i, this objective

can be reformulated as

N∑
i=1

(fTi Ef
′
i)

2 = eT

( N∑
i=1

f if
T
i

)
e , eTCe (3)

Note that C is positive semidefinite.
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QCQP Formulation

The constraints E ∈ ME are quadratic, and so is the objective (3), making
this a quadratically constrained quadratic program (QCQP). More concretely,
let x ∈ R12 be the concatenation of e and t. We can write (2) in the form

min
x
xTC0x s.t. xTAix = bi i = 1, . . . , 7

where

C0 =

[
C 0
0 03×3

]
and the matrices Ai ∈ R12×12 encode the constraints

h1 = eT1 e1 − t22 − t23 = 0

h2 = eT2 e2 − t21 − t23 = 0

h3 = eT3 e3 − t21 − t22 = 0

h4 = eT1 e2 + t1t2 = 0

h5 = eT1 e3 + t1t3 = 0

h6 = eT2 e3 + t2t3 = 0

h7 = tT t = 1

Convex Relaxation

Unfortunately, QCQPs are in general NP-hard to solve [1]. As discussed in
Professor Davenport’s last lecture, one approach is to relax it to a semidefinite
program (SDP) with variable X = xxT :

min
X∈R12×12

trace(C0X) s.t. X � 0, trace(AiX) = bi i = 1, . . . , 7 (4)

This is equivalent to the original problem if we impose the additional (non-
convex) constraint that rank(X) = 1.

How much does this relaxation cost us? A recent paper by Zhao [1] proves
that for relative pose estimation with small enough measurement noise, it
costs nothing.
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Proof. We will give the proof for the noise-free case. In this case, there is a
ground truth R̄ ∈ SO(3), t̄ ∈ S2 such that fTi [t̄]×R̄fi = 0 for all i.

Let ē = vec([t̄]×R̄) and let x̄ be the concatenation of ē and t̄. I claim that x̄
solves the original QCQP. Indeed, it is feasible by construction, and because
there is no noise, it has an objective value of ēTCē = 0. Since C0 � 0, this is
the best possible objective value.

To prove that the relaxation is tight, it remains to show that 0 is also the
optimal value of the relaxed problem (4). We can do this with Lagrangian
duality. It turns out that the dual of (4) is

max
ν∈R7

bTν s.t. C0 −
7∑
i=1

νiAi � 0

where b = (b1, . . . , b7). Because the choice ν = 0 is feasible and achieves
objective value 0, we conclude that the relaxation is tight.

Zhao [1] also shows that there is a neighborhood of positive semidefinite matri-
ces near the noise-free matrix C such that the semidefinite relaxation remains
tight. In other words, for small enough measurement noise, the relaxation
still costs us nothing. The proof of this more general tightness result requires
tools from algebraic geometry.

Recovering the Essential Matrix

Finally, how do we recover the optimal essential matrix E from the solution
X? of the SDP? Tightness guarantees that there exists a rank-1 solution to
the SDP (namely x̄x̄T ), but if the SDP has more than one solution, that may
not be the solution that we find.

Empirically, Zhao finds that X? always has the form[
x?ex

?T
e ∆

∆ x?tx
?T
t

]
where x?e ∈ R9 and x?t ∈ R3. The cross terms ∆ do not matter, since all
of the matrices C0, A1, . . . , A7 have zeros in those locations. Therefore, con-
catenating x?e and x?t gives a solution to the QCQP, and we can recover E
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from x?e. The relative pose R, t can then be extracted from E using standard
computer vision techniques.

It is an open question how to prove that X? will always have that form, and
in fact our own experimental results below seem to indicate that this is not
always the case.

Experimental Verification

In order to show the effective tightness in the noisy case, we need to use
experiments, as otherwise the exact error bound is unknown. Therefore, we
try this method on synthetic data and see how it performs.

As in [1], we construct synthetic data. We take one pose at the origin, pointed
along the z-axis. We take another pose, translated randomly away from the
origin with a max distance of 2. Its orientation is generated via random Euler
angles bounded between -0.5 and 0.5 radians. We select points at random
between 4 and 8 distance from the origin, only keeping points that can be
seen by both cameras, which we define as having a focal length of 800 pixels.
These points can all be transformed into the image planes of the respective
cameras since the camera parameters are known.

The matrix C can be constructed from the matching 2d points and the system
solved via the proposed method. Noise is added to the points to analyze its
effect on accuracy.

Solving

In practice, we use the CVXPY library to solve this problem. For semi-
definite programs like ours, CVXPY defaults to the Splitting Conic Solver
(SCS) [8]. This uses ADMM to solve the following problem:

minimize c>x

subject to Ax+ s = b

s ∈ K

Where K is a convex cone.
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In [1] they use different solvers than we do, but SCS is able to find a solution
to the problem as well, and extremely quickly.

Results

In the noise-free case and noisy cases their solver performs as well as the best
other method (eigensolver).

Figure 2: Results from [1]. Pose estimation accuracy with varying image
noise level.

Figure 3: Results from [1]. Pose estimation accuracy with varying number of
point correspondences.

However, in our case, we encountered a major problem - our solution X was
consistently rank 5, and not rank 1, which prevents us from recovering the
essential matrix. This is somewhat consistent with our theoretical findings,
as we encountered some problems with their argument that the matrix would
be rank 1. There exists a rank 1 solution, but it is not necessarily the one the
solver will find. Perhaps the difference in our results is due to the difference
in the solver we used, or perhaps there is some other subtlety.
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