
Navigating Holiday Traffic

Adam Fishman (afishman), Nathan Hatch (nhatch2), Yuxiang Yang (yuxiangy)

1 Introduction

Changing lanes in traffic requires complex coordination between many agents. It is a difficult task
even for human drivers. Part of the challenge is that the environment contains moving obstacles. But
another, perhaps more important, part of the challenge is that our car’s actions affect the behavior
of the other cars. In a traffic jam, merging is often impossible unless drivers in adjacent lanes react
to the merge by yielding. These complications mean that we cannot hope to train a robotic car to
change lanes using mere supervised learning. In order to account for how our actions affect the state
of the world in the future, we need the full power of reinforcement learning (RL).

One challenge in applying RL to this scenario is the need for a model of the behavior of other vehicles
in reaction to ours. Training on data collected offline suffers from the problem of domain shift,
wherein our model will only be accurate as long as the behavior of the robotic car closely matches
the policy used to collect the data. Hence, even if we use model-free RL algorithms, we still require
some kind of simulator for training.

In this project, we aim to explore various simulated lane-change environments and investigate the
performance of RL algorithms therein. The simulator must be sophisticated enough to generate
complex reactive behaviors, and the traffic configuration must be difficult enough that trivial solutions
(such as waiting for large traffic gaps to emerge spontaneously) do not work. We designed several
variants of a highway simulator and trained RL policies to explore the complexity of this problem
area. These RL problems turned out to be quite difficult, so our analysis focuses on understanding
the limitations of the RL algorithms used. Our hope is to find improvements upon these algorithms
and ultimately publish this work.

2 Related Works

Modeling traffic behaviors is an important first step to autonomous driving. Even in the absence
of an ego-vehicle, traffic is a complex dynamical system to model. In the field of transportation
engineering, traffic has long been described as a dynamical system [12] where individual cars are
constantly varying their paths to achieve lower cost. Sriram et al. [10] are able to use computer vision
and recurrent neural networks to predict future road states. Modeling the roadway is, in essence, a
simplified version of pedestrian prediction, which is a well studied area in its own right [15, 7]. For
our project, we looked into using simplified model to aid the learning of ego-vehicle, and compared
its behavior to model-free methods.

To navigate traffic, the ego-agent must learn to make lane changes effectively, which is a complex
process that requires interaction with other vehicles. According to Chandru et al. [2], one of the main
challenges in dense traffic is the difficulty of finding a large enough gap to ensure worst-case collision
avoidance. They work to address this problem by using a large set of collision avoidance behaviors to
reduce the required gap size. Another approach is to use turn signaling to encourage other cars to
yield enough space. This falls under the larger heading of inter-vehicle communication with humans,
as surveyed by [3].

Looking to solve lane-changing with reinforcement learning, Sadigh et al. [11] formalize the problem
of lane change as a dynamical system where the robot’s action choice affects both agents. The authors
use Inverse Reinforcement Learning to learn a policy for human drivers and then optimize a solution
within an MPC loop. Learning this behavior is simplified by only allowing for one human and one

Figure 1: The original 4-lane highway driving environment.

autonomous car on the road. Model-free reinforcement learning has been shown to be an effective
method for lane-change decisions as well. Hoel et al. [4] used a Deep-Q Network (DQN) [8] to
model lane change decisions. Our project uses a similar formulation as a baseline method.

3 Preliminaries

3.1 Reinforcement Learning Formulation

At a high level, we model our road as a collection of agents where one agent is actively controlled by
our system and all others follow their own, unknown desiderata. We call our controlled vehicle the
ego agent and the other cars on the road the other agents. We define the state of the road st as the
collective state of all agents together,

st =
(
sego
t , sother

t

)
(1)

Given an ego agent action at, the road state then evolves according to some dynamics function:

st+1 ∼ f(st, at) (2)

This dynamics function encapsulates the way that the entire road will react to a single action. However,
the distribution induced by the dynamics depends heavily on the individual policies of the other
agents. If we have a perfect model, even a noisy one, of how other agents will move, the dynamics
function can be modeled. However, on real roads, not knowing the other agents’ policies makes
the dynamics difficult to model. Works such as [10] attempt to learn a predictive model of the road,
which could be used for model-based reinforcement learning or model-predictive control. In our
project, we investigated both model-free and simple model-based approaches.

3.2 Simulated Highway Environment

As discussed in the introduction, learning lane-change policies using model-free RL requires
a good simulator. As a starting point, we build our environment on top of a simulator
called HighwayEnv [6], shown in Figure 1. To focus attention on high-level decisions,
the action space of the ego-vehicle in this environment is a discrete set of 5 meta-actions
{LANE_LEFT, LANE_RIGHT, SLOWER, FASTER, IDLE}. The environment relies on a low level con-
troller to drive the ego-vehicle according to our high-level instructions. For example, it uses a
proportional controller to choose the heading for lane-following.

At each timestep, the car observes its own position and velocity, as well as the relative position and
velocity of 10 closest cars. To discourage rapid lane changes, we used the following reward function:

r(st, at) =
v

30
− 0.3× lane_change− 1× collision (3)

where v is the ego-vehicle’s current velocity (in m/s), and {lane_change, collision} are indicator
variables for corresponding events.

In the baseline environment, all other cars are controlled heuristically according to the intelligent
driver model (IDM) [13] for vehicle spacing and the MOBIL model [5] for deciding when to change
lanes. Section 4.3 discusses another way we considered modeling other vehicles.

2

Figure 2: Illustration of the CarpoolEnv environment. We modeled the traffic regulation of High-
Occupancy Vehicles by designating the top lane as the "carpool" lane, where only the black HOV
vehicle and the green ego-vehicle may drive. Other vehicles (purple) must stay in non-carpool lanes.
The ego-vehicle starts in the bottom lane at the beginning of each episode.

Figure 3: Illustration of the TrafficJamEnv environment. To model traffic jams, we (1) decreased the
initial spacing between vehicles and (2) decreased the spacing parameters of the intelligent driver
model (IDM). Specifically, we decreased DISTANCE_WANTED from 10m to 5m, and decreased
TIME_WANTED from 1.5s to 0.15s.

4 Modeling Holiday Traffic

In the original HighwayEnv environment [6], the traffic is sparse enough that it is easy to find
opportunities to change lanes. In this section, we describe our modifications to make the problem
more difficult.

4.1 Carpool and HOV Lanes

As a first step, we added real-life traffic regulations of carpool lanes and HOV vehicles into the
environment (Figure 2), which we now call CarpoolEnv. Adding the carpool lanes poses several
challenges to the agent. Firstly, although it is beneficial for the ego-agent to stay in the carpool lane
in the long run, merging to the carpool lane might require frequent braking and multiple lane changes.
Therefore, the agent needs to consider the trade-off between short and long-term reward. Moreover,
since HOV lanes move much faster than regular lanes, the final merge into the carpool lane requires a
big gap to avoid collision, which requires the agent to be extremely cautious about nearby vehicles.

4.2 Traffic Jam and Turn Signals

We created a variant of CarpoolEnv called TrafficJamEnv in which the traffic is too dense for
opportunistic lane changes (Figure 3). In this environment, it is impossible to change lanes safely
unless the other cars yield. To enable yielding behavior, we implemented a form of turn signaling
by edging the ego-vehicle slightly into the desired lane. This causes the IDM vehicles to yield as
though the ego-vehicle were already in their lane. In this environment, the meta-actions LANE_LEFT
and LANE_RIGHT instead activate the turn signal. Performing the same action a second time will
complete the lane change.

4.3 Other Cars with More Intelligent Policies

The behavior of the other cars in CarpoolEnv and TrafficJamEnv is very passive. To address this, we
created a variant of the HighwayEnv called IntelligentAgentEnv where some of the other cars on the
road are optimizing an MDP based on their own perceived state of the road. When every car on the
road uses this policy, we qualitatively observe a dramatic increase in crashes. Instead, we randomly
choose several cars to use an MDP policy, while giving all other cars the IDM and MOBIL model.
Due to the computational complexity of this environment, we did not have time to train a policy for it,
but we intend to explore this as future work.

3

5 Solving Holiday Traffic

5.1 Direct Q-learning

As a baseline, we start by applying standard Q-learning techniques for the driving environment.
We model the optimal action value function Q∗(s, a) as a multi-layer perceptron (MLP), and fit
the parameters using collected experience. Similar to [9], we keep a replay buffer to store all
recent experiences of the agent. During training, we randomly sample a batch of N experiences
{(sn, an, s′n, rn, tn)}n=1...N from the replay buffer, iterate through the next-step actions a′n to
compute the one-step optimal Q values of each sample, and optimize for the errors using gradient
descent. We use ε-greedy exploration.

5.2 Finite MDP approximation

Due to the complex nature of the highway-driving environment, directly learning the policy without
modeling the environment can be inefficient. As an alternative, the authors in [6] proposed a
model-based approach to solve the highway driving environment called finite-MDP. Similar to model-
predictive control, the agent chooses the action at each timestep by building a simplified model of the
environment and performing value iteration.

Since value iteration is performed at each timestep, the environment model needs to be small enough
for fast convergence. To this end, the authors simplified the problem into a finite MDP by discretizing
the current state state s into a finite occupancy grid sfmdp ∈ {0, 1}|V |×|L|×|T |, where sfmdp[v, l, t] = 1
means that the ego-vehicle would collide with another vehicle in t seconds, if it stays in lane l with
speed v. The authors further assumed that all other vehicles move at constant speed and do not change
lanes, which simplifies the finite MDP construction process.

Since the problem is now tabular, tabular value iteration is guaranteed to converge. The authors then
chose the action a that maximizes qfmdp(sfmdp, a) for the current state. To overcome the model errors,
the authors construct and solve the finite MDP at each step with the latest observation.

5.3 Residual Q-learning

Although finite-MDP approximation provides a simple, tractable solution for the environment, the
constant speed assumption it makes on other vehicles could still be frequently violated, especially in
dense traffic. To overcome this, we propose to learn a residual Q-function that fills the gap between
the optimal Q-function q∗(s, a) and the Q-function approximated by the finite-MDP approximation
qfmdp(sfmdp, a), such that

q∗(s, a) = qfmdp(sfmdp, a) + qNN(s, a) (4)

where qNN is a neural network.

Compared to learning the Q-function directly, learning the residual Q-function can make exploration
much more efficient, especially in the early stages of training. Initially, when the output of the residual
Q network qNN is small, the Q-function is dominated by the finite-MDP Q-function qfmdp, which is
already aware of basic skills, such as collision avoidance. As the learning continues, the residual Q
network can gradually learn from experience and override the values of qfmdp. To train the residual Q
network, we modify the replay buffer to also store in the finite-MDP approximation of each state, so
that qfmdp(sfmdp, a) can be retrieved during training.

6 Results and Analysis

6.1 CarpoolEnv

The constant-speed, constant-lane assumption of finite-MDP does lead to frequent collisions in
CarpoolEnv, which we illustrate in Figure 4. When the traffic is dense, the change in speed or lane of
nearby vehicles could significantly affect the performance of the ego-vehicle, and more advanced
modeling of neighbouring vehicles is required to effectively navigate in such environments.

The performance of the learning-based approaches is shown in Figure 5. Learning to solve the entire
environment from scratch, direct Q-learning learns very slowly and could hardly perform any better

4

Figure 4: Some typical failures of the FMDP agent. (Left) The ego-agent fails to understand the
lane-changing behavior of the vehicle in front. (Middle) The ego-agent under-estimates the gap
required for lane-changing. (Right) The ego-agent failed to notice the braking of car in front and kept
driving at constant speed.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Environment Steps 1e4

0

5

10

15

20

25

30
Av

er
ag

e
Re

tu
rn

Direct-Q
Residual Q
Finite-MDP

Figure 5: Learning curves for all our agents in CarpoolEnv. Finite-MDP does not require training and
the average performance is shown in the dashed green line.

than the finite-MDP approximation. With the aid of the finite-MDP, residual Q-learning learns much
faster, but it still does not out-perform the finite-MDP agent. In Figure 6, we show several examples
in which residual Q-learning effectively corrects the finite-MDP agent. Further qualitative results can
be seen on the website.1

Finally, we note that all our agents’ performance in the carpool environment are very noisy. We
hypothesize this as the result of our binary reward function, which adds penalty on collision, but does
not add penalty for getting close to the vehicle in front. Therefore, it may be difficult for a model-free
agent to learn a proper collision-avoidance behavior.

6.2 TrafficJamEnv

Although finite-MDP approximation works well in the regular carpool environment, building the
finite-MDP in the TrafficJamEnv is significantly more challenging, as the yielding behavior of nearby
vehicles is no longer modeled by the constant-speed assumption. Therefore, we only trained the
direct Q-learning agent for the TrafficJamEnv. To make the training easier, we hand-collected 10
episodes of human demonstrations and added them to the replay buffer at the beginning of training.

As shown in Figure 7a, Q-learning in this environment requires a significantly larger amount of data
compared to the previous carpool environment, which reveals the challenges of learning to drive in
dense traffic. Distinct driving behaviors emerge from training (Figure 7b), where the agent learns to
use turn signals to make spaces in nearby lanes before making full lane changes.

To explore the limits of what is possibile in this environment, we found that a manually-engineered
open-loop policy for changing lanes performs very well. The five-action sequence LANE_LEFT (to
activate the turn signal), SLOWER, IDLE, FASTER, LANE_LEFT almost always executes a safe lane
change. For quantitative comparison, we executed this open-loop policy for the three lane changes,
then switched to the finite-MDP policy. Over twenty trials, this crashed twice, with an average return
of 26.2. (Compare to Figure 7a.) Qualitative results can be seen on the website (see footnote 1).

1https://sites.google.com/cs.washington.edu/holiday-traffic

5

https://sites.google.com/cs.washington.edu/holiday-traffic

Figure 6: Examples of residual Q-learning correcting the FMDP-agent’s behavior. (Top): Residual-Q
decides to slow down the vehicle to avoid potential collision. (Mid): Residual-Q shifts the vehicle
earlier to the carpool lane for long-term benefit. (Bottom): Residual-Q cancels a lane-change to avoid
collision.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e4

0

5

10

15

20

25

30

Av
er

ag
e

Re
tu

rn

(a) Learning curve for the turn-signal envi-
ronment.

(b) Snapshots of the agent using turn signals
to make space and move to carpool lane.

Figure 7: Results on TrafficJamEnv.

7 Conclusion and Future Work

We presented three environments built on top of HighwayEnv which more realistically model traffic.
We then trained agents on top of two of these environments and demonstrated that a combination of
Q-learning with a simplified and approximated model-based method performs well.

There were several challenges we discovered while working on this project. Collisions in our
environment are quite common, which leads to noisy model-free results. We suspect that training
would be faster if we modeled the physics of the other cars explicitly in the model. We also realized
that influence is an important part of lane-changing, but the environment in its current form is unable
to model influence without the other agents learning simultaneously. Ultimately, this is part of the
biggest challenge we encountered: we need more realistic modeling of the other agents on the road.

As mentioned in the introduction, we aim to continue this work with a goal of publication. As part of
that, we would like to explore how to effectively influence other drivers. Xie et al.[14] demonstrated
an effective method for learning to influence across multiple trials, but for a driving scenario, influence
must function continuously while driving as well. We are also curious to see the emergent influence
strategies developed by multiple agents on the road with turn signals. Other work on emergent
behavior has seen unexpected strategies develop in multi-agent games [1]. We are also interested in
exploring how well these policies generalize between different road conditions. Ideally, we’d be able
to train in one type of traffic and see good performance in unseen conditions, a necessary trait for safe

6

autonomous driving. And finally, we are interested in exploring what is necessary for a more realistic
and sophisticated simulator, such as a 3D simulator or a simulator that requires continuous control.

References

[1] Bowen Baker, I. Kanitscheider, T. Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. ArXiv, abs/1909.07528, 2020.

[2] R. Chandru, Y. Selvaraj, M. Brännström, R. Kianfar, and N. Murgovski. Safe autonomous
lane changes in dense traffic. In 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pages 1–6, 2017.

[3] Berthold Färber. Communication and Communication Problems Between Autonomous Vehicles
and Human Drivers, pages 125–144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[4] C. Hoel, K. Wolff, and L. Laine. Automated speed and lane change decision making using
deep reinforcement learning. 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 2148–2155, 2018.

[5] Arne Kesting, Martin Treiber, and Dirk Helbing. General lane-changing model mobil for
car-following models. Transportation Research Record, 1999(1):86–94, 2007.

[6] Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

[7] W. Ma, De-An Huang, N. Lee, and Kris M. Kitani. Forecasting interactive dynamics of
pedestrians with fictitious play. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4636–4644, 2017.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, Andrei A. Rusu, J. Veness, Marc G. Bellemare, A. Graves,
Martin A. Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, S. Petersen, C. Beattie, A. Sadik,
Ioannis Antonoglou, H. King, D. Kumaran, Daan Wierstra, S. Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[10] Sriram N N, Buyu Liu, F. Pittaluga, and M. Chandraker. Smart: Simultaneous multi-agent
recurrent trajectory prediction. ArXiv, abs/2007.13078, 2020.

[11] D. Sadigh, S. Sastry, S. Seshia, and Anca D. Dragan. Planning for autonomous cars that leverage
effects on human actions. In Robotics: Science and Systems, 2016.

[12] Michael J. Smith. The stability of a dynamic model of traffic assignment—an application of a
method of lyapunov. Transportation Science, 18(3):245–252, 1984.

[13] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical review E, 62(2):1805, 2000.

[14] Annie Xie, Dylan P. Losey, R. Tolsma, Chelsea Finn, and D. Sadigh. Learning latent representa-
tions to influence multi-agent interaction. ArXiv, abs/2011.06619, 2020.

[15] Brian D. Ziebart, Nathan D. Ratliff, G. Gallagher, C. Mertz, K. M. Peterson, J. Bagnell,
M. Hebert, Anind K. Dey, and S. Srinivasa. Planning-based prediction for pedestrians. 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3931–3936, 2009.

7

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

	Introduction
	Related Works
	Preliminaries
	Reinforcement Learning Formulation
	Simulated Highway Environment

	Modeling Holiday Traffic
	Carpool and HOV Lanes
	Traffic Jam and Turn Signals
	Other Cars with More Intelligent Policies

	Solving Holiday Traffic
	Direct Q-learning
	Finite MDP approximation
	Residual Q-learning

	Results and Analysis
	CarpoolEnv
	TrafficJamEnv

	Conclusion and Future Work

