
Search-Based Test Generation for Robotic Motion Planning
Algorithms

Amanda Baughan
University of Washington

baughan@cs.washington.edu

Nathan Hatch
University of Washington

nhatch2@cs.washington.edu

Vinitha Ranganeni
University of Washington
vinitha@cs.washington.edu

Boling Yang
University of Washington

bolingy@cs.washington.edu

Abstract
Testing robot motion planning algorithms is a repetitive and time-
consuming manual task for roboticists. This work introduces and
evaluates a tool that automatically verifies whether a planner has
been implemented correctly. We formulate the planner verification
problem as an optimization task over obstacle configurations, which
we solve using a gradient-free optimization algorithm. Our experi-
mental evaluation shows that compared to human verification, this
approach achieves comparable accuracy and requires significantly
less time. Simple random testing performs similarly well. We dis-
cuss the relevance and implications of our findings for both the
software engineering and robotics research communities.

Keywords
Search-Based Planning, Testing, Robotics, Motion Planning, Dy-
namic Program Analysis, Random Testing

ACM Reference Format:
Amanda Baughan, Nathan Hatch, Vinitha Ranganeni, and Boling Yang. 2021.
Search-Based Test Generation for Robotic Motion Planning Algorithms. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
One reason we do not currently see robots operating alongside
humans in everyday life is because they cannot effectively navigate
complex environments. The area of robotics that attempts to ad-
dress this challenge is called motion planning. A motion planning
algorithm (planner) seeks to find a path from one configuration
or position to another that avoids colliding with obstacles. Plan-
ning algorithms can be implemented using a variety of approaches,
however, our solution is targeted towards search-based planning
in discrete space (see 2.1).

When implementing a planner, many different kinds of bugs can
arise. A large part of the implementation effort goes towards testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the planner to verify that it is working as expected. Some examples
of ways that a planner could fail are:

• Heuristic values overflow. Some planners use a heuristic
function to guide the planner towards the goal. Heuristic val-
ues are often represented as integers. Heuristic (integer) over-
flow is a common issue, especially when planning in high-
dimensional spaces, since the number of states expanded
and their associated values can increase exponentially with
an increase in dimensionality.
• Infinite exploration. If a planner continually searches over
duplicated states, it may never terminate, or it may run out
of memory and crash.
• Unable to find solution. If a planner neglects to check
whether the start and goal state are within the world bound-
aries, it may spend a long time looking for a solution that
does not exist.

Currently, the typical testing strategy is a manual ad hoc imple-
mentation of undirected random testing: a roboticist will choose
random start and goal configurations to input into the planner.
However, this is not guaranteed to catch any of the failure cases
listed above. Often these failures occur in challenging scenarios
where the heuristic guides the search towards a region often re-
ferred to as a “local minimum.” In these regions the search ceases
to progress towards the goal or progresses extremely slowly. Man-
ually constructing scenarios that contain local minima is tedious
and time-consuming.

In this work we automatically generate challenging scenarios
with local minima using evolutionary search techniques in order to
catch several different types of bugs. Our experimental evaluation
shows that compared to human verification, this approach achieves
comparable accuracy and requires significantly less time. However,
we found that random testing performs just as well as evolutionary
search. This finding extends and confirms prior works in software
testing research [15], in which random automated testing has been
found to achieve similar results to evolutionary testing.

1.1 Motivating Example
Imagine a team of roboticists are trying to plan a footstep path
(i.e. a plan for a bipedal robot’s feet). Each foot is represented by
a 3-dimensional configuration (𝑥,𝑦, 𝜃) where (𝑥,𝑦) is the position
and 𝜃 is the orientation of the foot. This requires planning in a
6-dimensional space. When planning in a high-dimensional space
there is much room for implementation error, and creating test

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Amanda Baughan, Nathan Hatch, Vinitha Ranganeni, and Boling Yang

cases that effectively expose errors is almost impossible with the
current manual, undirected random testing approach. In this video,
the blue and purple rectangles represent the planner’s search for
a path. The planner spends a lot of time trying to see if it can fit
through the gap between the chair and the kitchen island (a local
minimum). It exhaustively searches all possible states inside this
gap, and then eventually plans around the island. If the planner
was not implemented correctly, it could have run out of memory
and crashed during this computation, or failed to escape from the
local minimum. The gap in this example was manually engineered
to be a difficult distance to plan a path through, and developing this
test case was highly time-intensive.

2 Background and Related Work
2.1 Search-Based Motion Planning in Robotics
Search-based planning algorithms (for example, A* and its associ-
ated algorithms [6, 12]) use graph search methods to find paths in
a discrete representation of the world. A prerequisite to planning
motion discretely is a finite set of actions that can be applied to
a finite set of states. The solution consists of an appropriate se-
quence of actions [10]. Many search-based planning approaches
use a heuristic function to guide the planner’s search towards the
goal. The algorithm is considered complete if its heuristic function
is admissible and consistent. Admissiblemeans the heuristic function
never overestimates the cost of reaching the goal; consistent means
the heuristic function’s estimated “cost” or distance left to traverse
from any given vertex is always less than or equal to the estimated
distance from any neighboring vertex to the goal, plus the step
cost of reaching that neighbor [10]. One benefit of search-based
planning is that when successful, the solution is guaranteed to be
optimal. However, it is computationally unwieldy when working
in highly dimensional spaces. Therefore, search-based planning
typically is employed only in low-dimensional spaces.

2.2 Testing in Software Engineering
2.2.1 Search-based Testing Search-based testing refers to applying
search-based optimization to the generation of software test data
or test cases. The objective function in search-based optimization
algorithms is called the fitness function [8]. The fitness value is a
numerical value that expresses the performance of candidate solu-
tions, with regard to the current optimal candidate solution to allow
for comparison, with the goal of satisfying the test criterion [1, 14].
The fitness function guides search in choosing candidate solutions
for reproduction, gradually improving fitness values with each gen-
eration until a solution is found. The notion of fitness is critical to
the application of search-based testing algorithms: their success
depends on the use of a fitness function that changes neither too
rapidly nor too slowly within the design parameters of the opti-
mization problem [1]. Different fitness functions can be defined to
capture different test objectives, allowing the same search-based
optimization strategy to be applied to different test data generation
scenarios [1, 8, 16]. It has been shown that search-based testing out-
performs random testing in many cases, as random testing doesn’t
provide full coverage [8, 16]. However, one of the drawbacks of
search-based techniques is that they can become stuck in local

Figure 1: Flow chart of our approach

optima and perform poorly if the search landscape or fitness func-
tion offers no guidance [13]. For this reason, metaheuristic search
methods such as evolutionary algorithms are often more practical
and generalizable than neighborhood search methods such as hill
climbing [1]. In evolutionary tests, an initial set of candidate solu-
tions is generated and iteratively updated. Each new generation
is produced by stochastically removing less desired solutions, and
introducing small random changes [1, 8]. Evolutionary tests have
been shown to be robust and suitable for the solution of different
test tasks [1, 8, 11, 13, 16]. The covariance matrix adaptation evo-
lution strategy (CMA-ES) is one such example of an evolutionary
algorithm [7].

2.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
In CMA-ES, candidate solutions are sampled from a multivariate
normal distribution in R𝑛 . At each iteration, the mean and covari-
ance matrix of this distribution are updated based on the ranking
between candidate solutions. Neither derivatives nor the fitness
function values themselves are required by the method [7]. It is
distinct from other approaches such as the Cross-Entropy Method
in that it estimates the covariance matrix by maximizing the like-
lihood of successful search steps rather than solution points [5, 7].
CMA-ES has been empirically successful in hundreds of applica-
tions and is considered to be particularly useful with non-convex,
ill-conditioned, multi-modal or noisy objective functions [3, 4, 9].

2.2.3 Test Oracles A test oracle is a source of information about
whether the output of a program is correct or not. A test oracle
might specify correct output for all possible inputs or only one
specific input. It also may not specify actual output values, but only
the constraints on them [2].

3 Approach
Our approach employs CMA-ES [7], a gradient-free optimization
technique, to search the space of test environments and generate
challenging test cases for search-based robotics motion planning.

Each test environment is represented by a vector of real num-
bers, which represent obstacle configurations. We choose a fitness
function that seeks obstacle configurations that are difficult to gen-
erate manually and most likely to cause failures. The fitness value
of the environment is evaluated by running the motion planning

https://homes.cs.washington.edu/~vinitha/videos/dijkstra.mp4

Search-Based Test Generation for Robotic Motion Planning Algorithms Conference’17, July 2017, Washington, DC, USA

Algorithm 1 A-Star Algorithm

1: function 𝐴∗(𝑞𝑔 , 𝑞𝑢)
2: if !is_valid(𝑞𝑔) | | !is_valid(𝑞𝑢) then
3: return NIL
4: 𝑄 = ∅
5: 𝑔[𝑞𝑢] ← 0
6: 𝑄.add_with_priority(𝑞𝑢 , 0)
7: while 𝑄 ≠ ∅ do
8: 𝑞𝑣 ← 𝑄.extract_min()
9: if 𝑑𝑖𝑠𝑡 (𝑞𝑣, 𝑞𝑔) < 𝜖 then
10: return extract_path(𝑞𝑢 , 𝑞𝑣)

11: 𝑉succ ← succ(𝑞𝑣)
12: for 𝑞′𝑣 ∈ 𝑉succ do
13: if !is_valid(𝑞′𝑣) then
14: continue
15: 𝑎𝑙𝑡 ← 𝑔[𝑞𝑣] + length(𝑞𝑣,𝑞

′
𝑣) + ℎ(𝑞′𝑣)

16: if 𝑔[𝑞′𝑣] = NIL | | 𝑎𝑙𝑡 < 𝑔[𝑞′𝑣] then
17: 𝑔[𝑞′𝑣] ← 𝑎𝑙𝑡

18: 𝑄.add_or_update_priority(𝑞′𝑣, 𝑔[𝑞′𝑣])
19: return extract_path(𝑞𝑢 , 𝑞𝑣)

algorithm and collecting several data points about the run, such
as the number of nodes expanded in the search tree and the wall
clock time.1 Once we have the fitness values, we apply the CMA-ES
optimization update [7] to generate a new set of candidate environ-
ments with obstacle configurations designed to bemore difficult than
the previous set. We continue iterating until the motion planning
algorithm fails or until the difficulty of the environments seems to
plateau (as measured by our fitness function).

As discussed in Section 2.2.3, automatic detection of certain kinds
of bugs requires a test oracle. For the motion planning application,
given an obstacle configuration, an oracle should specify whether
the planning problem is feasible, and if so, what is the length of
the optimal path. This essentially amounts to solving the original
planning problem. In many cases, it is unrealistic to assume access
to such an oracle. Hence, for our experiments, we designed a set of
partial oracles, each intended to catch one specific kind of bug. If
for a given test input, the planner triggers any of these test oracles,
then we have found a failing test case. Figure 1 shows a diagram of
our approach architecture.

4 Experimental Methodology
Our experiments are based on a Python implementation of A* (see
Alg. 1). A* computes the shortest path between the given start
configuration and goal region, 𝑞𝑢 and 𝑞𝑔 respectively. First the
algorithm checks if the given configurations are not in collision and
in the bounds of the environments (Line 2). Then it initializes the
priority queue𝑄 (Line 4) and sets the g-value (cost to get to the node)
of 𝑞𝑢 in the g-value (cost-to-come) map (Line 5). While the priority
queue is not empty, A* pops a node 𝑞𝑣 off the priority queue (Line 8).
If the distance between the node popped and the goal configuration,
𝑞𝑣 , is less than some 𝜖 representing the radius of the goal region, the

1For more details, see Section 4.

(a) (b)

Figure 2: (a) Example of a possible planning scenario, with
solution superimposed. Units are centimeters. (b) Example
of infeasible planning scenario

shortest path between 𝑞𝑢 and 𝑞𝑣 is returned (Line 9).2 Otherwise,
we find the successors of 𝑞𝑣 and for each successor 𝑞′𝑣 , check that
it is valid (Line 13), compute its cost (Line 15), and add or update
its priority in the queue (Line 18). If all the nodes are expanded, A*
returns the partial path to the goal (Line 19).

We refer to this as the ref (reference) planning algorithm. We
create five buggy implementations of A* by manually introducing
bugs into the reference implementation at various places, specified
by the line number in the pseudo code, detailed below.
• Bug1: The 𝜖 (radius of the goal region) in the goal termina-
tion criteria is too small to be achieved while calculating in
discrete space (Line 9).
• Bug2: Planner extracts the path to the goal region 𝑞𝑔 in-
stead of configuration 𝑞𝑣 in the goal region (Line 10, see
footnote 2).
• Bug3: Use 𝐿1 distance as the A* heuristic instead of 𝐿2 dis-
tance, so that it is no longer consistent (Line 15).
• Bug4: Multiply all distance and heuristic values by 230 to
induce numerical overflow (Line 15).
• Bug5: Don’t check whether a discovered node has already
been expanded (Line 16).

For each of these bugs, we implemented a corresponding oracle
as follows:
• False negative (Bug1): The algorithm says that there is no
feasible plan even when there are no obstacles.
• Invalid plan (Bug2): The algorithm reports success, but can-
not extract a valid path to the goal region.
• Inconsistent heuristic (Bug3): The heuristic values along the
solution path do not obey the triangle inequality. Note that
this oracle requires access to additional details of the plan-
ning algorithm, namely the heuristic values along the solu-
tion path.
• Integer overflow (Bug4): The processor detects integer over-
flow while the algorithm is running.

2It is difficult for the planner to find a path to an exact goal configuration due to
information loss when discretizing and the complexity of the state space. Thus, it is
common to plan a path to a goal region (i.e. a set of states that are within some epsilon
of the desired goal state)

Conference’17, July 2017, Washington, DC, USA Amanda Baughan, Nathan Hatch, Vinitha Ranganeni, and Boling Yang

random human CMA

ref 1.0 1.0 1.0
bug1 1.0 1.0 1.0
bug2 1.0 1.0 1.0
bug3 1.0 1.0 1.0
bug4 1.0 0.5 1.0
bug5 1.0 1.0 1.0

Table 1: Fraction of trials in which the validation algorithm
correctly identified whether the implementation was buggy

• Failure to terminate (Bug5): The planner does not complete
within fifteen seconds. In general, to avoid false positives
from this oracle, the practitioner should know an upper
bound on the time required for the planner to terminate. For
the planning problems described below, typical worst-case
completion time of an accurate planner was eight seconds.

We test these planning algorithms in a simulated 2D environment
that is 0.3𝑚 × 0.3𝑚 and has a grid resolution of 0.01𝑚. The robot
is a 0.04𝑚 × 0.02𝑚 rectangular robot whose pose consists of 2D
location (𝑥,𝑦) and rotation 𝜃 . For a given robot pose 𝑝 = (𝑥,𝑦, 𝜃),
the action space (i.e. set of possible actions the robot can apply) is
{(𝑥 ± 0.01, 𝑦, 𝜃), (𝑥,𝑦 ± 0.01, 𝜃), (𝑥 ± 0.01, 𝑦 ± 0.01, 𝜃)}, (𝑥,𝑦, 𝜃 ±
𝜋
4)}. The obstacles are the world boundaries and a collection of 𝐾
rectangles 𝑟1, . . . , 𝑟𝐾 . Our experiments used 𝐾 = 2. Each rectangle
has parameters 𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , ℓ𝑘 ,𝑤𝑘) comprising 2D location, length,
and width. The start pose 𝑝𝑆 and goal pose 𝑝𝐺 each have three
parameters (𝑥,𝑦, 𝜃){𝑆,𝐺 } comprising 2D location and orientation.
The goal region consists of poses (𝑥,𝑦, 𝜃) such that |𝑥 − 𝑥𝐺 | ≤
0.005, |𝑦 − 𝑦𝐺 | ≤ 0.005, and |𝜃 − 𝜃𝐺 | ≤ 0.5, where angles are
given in radians. These 4𝐾 + 3 parameters describe all possible
testing environments.3 The planning problem is to find the shortest
sequence of poses 𝑝0, . . . , 𝑝𝑁 such that 𝑝0 = 𝑝𝑆 , 𝑝𝑁 is within the
goal region, and none of the poses are in collision with any of
the obstacles. A screenshot of one possible testing environment is
shown in Figure 2a. Note that in many of these environments, the
planning problem is infeasible (see Figure 2b).

4.1 Evaluation
We compare three different approaches to verifying these 𝐴∗ im-
plementations.

Our first baseline, human, is manual verification by humans. We
give a human a random, blind planner implementation. They are
tasked with either (1) identifying the bug and exhibiting a test case
for which the algorithm fails, or (2) declaring that the implemen-
tation is correct. For each of these trials, we collect the following
data:
• Whether they correctly identified whether the implementa-
tion was buggy
• How much wall-clock time elapsed before they made their
decision

3Catching bug1 is a special case, because the test oracle requires running the planner
on an environment with no obstacles. When collecting data about catching this bug,
the validator knows that the planner implementation is either ref or bug1, and the
test input consists only of the start and goal poses.

random human CMA

ref 169.8 ± 3.7 480 ± 350 271 ± 38
bug1 8.02 ± 0.22 14.0 ± 3.2 8.54 ± 0.28
bug2 0.69 ± 0.25 40. ± 29 0.88 ± 0.55
bug3 1.11 ± 0.52 143 ± 55 1.7 ± 1.3
bug4 9.4 ± 6.2 115 ± 58 7.6 ± 6.3
bug5 12.7 ± 3.3 21.2 ± 2.5 15.36 ± 0.12

Table 2: Computation time in seconds (average ± standard
deviation)

Each time a planning algorithm is executed, we collect the fol-
lowing data:
• How many nodes were expanded in the A* search tree
• Whether any of the test oracles detected a bug

Our second baseline, random, is an automatic algorithm that
randomly generates test cases. Parameters were drawn from the
distribution below:
• Obstacle length and width drawn from Unif([0, 0.12])
• Obstacle, start, and goal location drawn from Unif([0, 0.3])
• Start and goal orientation drawn from Unif([0, 2𝜋])

If the planning algorithm fails within some fixed number 𝑀 of
such tests, the random verification algorithm reports this test case;
otherwise it declares the implementation correct. We used 𝑀 =

500, because this roughly matched the number of tests run by the
optimization-based algorithm (CMA, described below) when run on
a bug-free implementation of the planner.

Finally, we test an optimization-based algorithm, CMA, as sug-
gested in Section 3 above. For our fitness function, we use the
number of nodes expanded in the 𝐴∗ search tree. We use three
random restarts, to avoid the problem of the algorithm being stuck
at a poor initialization point, e.g. a local minimum or a region with
no gradient signal. We terminate each random restart when the
fitness value has not improved within the last five iterations.

For the automatic algorithms, due to randomness, for each com-
bination of planner and verifier we report mean and standard devia-
tion over five independent trials. For human testing, two computer
science PhD students familiar with robotic motion planning per-
formed blind validation tests until each bug had been encountered
twice; we report mean and standard deviation over these two trials.

We consider a validator successful if it correctly identifies the
whether each implementation is buggy on at least four of the five
trials. We consider it useful if it finishes more quickly than human
verification (human).

5 Results
Quantitative. Accuracy is shown in Table 1 and computation time
is shown in Table 2. Both random and CMA achieve perfect accuracy
using the given set of oracles. Hence, both methods are successful
validators according to our criteria. One of the human trials failed
to notice the heuristic overflow bug (bug4).

The random validator appears to be somewhat faster than CMA, al-
though the difference is small except when running on the bug-free
planner (ref). Both methods were faster than the human baseline,
which makes both methods useful according to our criteria.

Search-Based Test Generation for Robotic Motion Planning Algorithms Conference’17, July 2017, Washington, DC, USA

Figure 3: Five equally spaced tests from one of the CMA random restarts

The distribution of random test inputs described in the previ-
ous section results in many infeasible planning problems, usually
because the start or the goal pose intersects one of the obstacles.
Nonetheless, we observed that enough of the problems are feasible,
and enough of the feasible problems are complicated enough, that
all of the bugs that we considered are virtually guaranteed to occur
within the first few dozen samples.

Qualitative. As shown in Figure 3, CMA tends to increase the
number of node expansions by moving the start and goal farther
from each other, moving obstacles out of the way if necessary to
increase this distance. Hence, the optimized tests are not partic-
ularly interesting from a planning perspective. In addition, CMA
requires many relatively similar samples in order to find a good
update direction at each iteration, which means that it does not see
a diverse set of test inputs as quickly as the random validator does.
This may explain its relatively high computation time.

To investigate the internal behavior of the optimization-based
approach, Figure 4 graphs learning curves for CMA on two of the
implementations (ref and bug4). During validation of the reference
implementation, the objective function increases gradually for most
trials. This indicates that CMA generates test cases that require the
planner to expand more nodes to come up with solutions compared
to the previous iteration. While validating bug4, all trials stopped
at a very early phase of the optimization process. We found that in
our simple planning environments, most bugs are caught during
the very first iteration of the CMA algorithm. This illustrates why
random performs as well as CMA in our experiments. Figure 4c shows
the learning curves on the same bug4 implementation in a larger
120 × 120 state-space. These longer and increasing learning curves
suggest that more complex planning problems may be able to take
better advantage of search-based testing.

5.1 Threats to Validity
An obvious threat to validity is that these buggy planner imple-
mentations did not occur “in the wild”. Instead, we started from a
valid implementation and manually introduced bugs. Future work
may address this by investigating the commit history of a project
with a previously buggy implementation of a planning algorithm.
We attempted to mitigate this issue by testing a wide variety of
potential bugs.

6 Conclusion
In this paper, we investigated the question of whether automated
testing techniques could accelerate the testing process for robotic

motion planning algorithms. By automating the process of finding
challenging test cases, our goal was that researchers could focus
on solving, rather than finding, those corner cases.

Our experiments show that given a high-quality set of test oracles
and a reasonably good distribution for random test inputs, a high
bug detection rate can be achieved simply by running the planner
on a few dozen randomly sampled test inputs. By comparison,
optimization-based automated testing yielded similarly accurate
results, but at the cost of more time than random automated testing.

In more complicated and high-dimensional environments, our
optimization-based approach to automated testing might outper-
form simple random evaluations [7]. For example, a humanoid robot
has many degrees of freedom and operates in a 3D environment.
In this case, it would likely be difficult to design a distribution of
random test inputs that captures all of the desired edge case.

The performance of optimization-based testing might also im-
prove with a different choice of fitness function. As noted above,
the problems found by CMA when optimizing for the number of
expanded nodes are not usually very interesting from a planning
perspective. Optimizing for something like path length might en-
courage CMA to make more creative use of obstacles. Another
choice that might work well for the heuristic overflow bug in par-
ticular (bug4) would be directly optimizing the maximum observed
heuristic value.

Perhaps the most serious challenge to the usefulness of this
approach is the difficulty of obtaining high-quality test oracles.
We found that simple partial oracles like “the program should not
crash” were not enough to detect common bugs in motion planning
algorithms. In the end, each of our test oracles was designed to
catch one specific bug. This unfortunately means that we could
only catch bugs that we had anticipated. One way to get around
this would be to have a reference implementation, known to be
bug-free, which could function as a universal oracle. But in that
case, it is hard to see why we would need to implement automated
testing at all.

Overall, we find that with enough customization, automated
testing is effective at catching bugs in robotic planning algorithms,
but further research into applications in high-dimensional environ-
ments is needed to evaluate whether it will be useful in practice.

7 Code
Our code is made available at https://github.com/vinitha910/503-
final-project.

https://github.com/vinitha910/503-final-project
https://github.com/vinitha910/503-final-project

Conference’17, July 2017, Washington, DC, USA Amanda Baughan, Nathan Hatch, Vinitha Ranganeni, and Boling Yang

(a) (b) (c)

Figure 4: (a) Learning curve of CMA on bug-free implementation in 30 × 30 grid environment, (b) on bug4 in 30 × 30 grid envi-
ronment, and (c) on bug4 in 120 × 120 grid environment

References
[1] André Baresel, Harmen Sthamer, and Michael Schmidt. 2002. Fitness Function

Design To Improve Evolutionary Structural Testing. 1329–1336.
[2] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.

The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507–525.

[3] P. Cerveri, A. Pedotti, and G. Ferrigno. 2004. Evolutionary optimization for
robust hierarchical computation of the rotation centres of kinematic chains from
reduced ranges of motion the lower spine case. Journal of Biomechanics 37, 12
(2004), 1881 – 1890. https://doi.org/10.1016/j.jbiomech.2004.02.032

[4] David Charypar, Kay W. Axhausen, and Kai Nagel. 2006. Implementing activity-
based models: Accelerating the replanning process of agents using an evolution
strategy. In Conference On Issues In Behavioral Demand Modeling And The Evalu-
ation Of Travel Time.

[5] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein.
2005. A tutorial on the cross-entropy method. Annals of operations research 134,
1 (2005), 19–67.

[6] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search Strategies and
the Optimality of A*. J. ACM 32, 3 (July 1985), 505–536. https://doi.org/10.1145/
3828.3830

[7] Nikolaus Hansen. 2016. The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772 (2016).

[8] Mark Harman and Phil McMinn. 2010. Theoretical and Empirical Study of Search-
Based Testing: Local, Global, and Hybrid Search. IEEE Transactions on Software
Engineering 36, 2 (March–April 2010), 226–247.

[9] T. Hohm and E. Zitzler. 2007. Modeling the Shoot Apical Meristem in A. thaliana:
Parameter Estimation for Spatial Pattern Formation. In Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics (evoBIO 2007) (LNCS), Elena
Marchiori, Jason H. Moore, and Jagath C. Rajapakse (Eds.), Vol. 4447. Springer,
102–113. https://doi.org/10.1007/978-3-540-71783-6_10

[10] Steven M. LaValle. 2006. Planning algorithms. Cambridge University Press.
https://doi.org/10.1017/CBO9780511546877

[11] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3–13.

[12] Maxim Likhachev, Geoffrey Gordon, and Sebastian Thrun. 2003. ARA*: Anytime
A* with Provable Bounds on Sub-Optimality, Vol. 16.

[13] Jan Malburg and Gordon Fraser. 2011. Combining Search-Based and Constraint-
Based Testing. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’11). IEEE Computer Society, USA,
436–439. https://doi.org/10.1109/ASE.2011.6100092

[14] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
Testing, Verification and Reliability 14, 2 (2004), 105–156. https://doi.org/10.1002/
stvr.294 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294

[15] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
Strength of Random Search on Automated Program Repair. https://doi.org/10.
1145/2568225.2568254

[16] Man Xiao, Mohamed El-Attar, Marek Reformat, and James Miller. 2007. Empirical
evaluation of optimization algorithms when used in goal-oriented automated
test data generation techniques. Empirical Software Engineering 12, 2 (2007),
183–239.

https://doi.org/10.1016/j.jbiomech.2004.02.032
https://doi.org/10.1145/3828.3830
https://doi.org/10.1145/3828.3830
https://doi.org/10.1007/978-3-540-71783-6_10
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1109/ASE.2011.6100092
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.294
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 Background and Related Work
	2.1 Search-Based Motion Planning in Robotics
	2.2 Testing in Software Engineering

	3 Approach
	4 Experimental Methodology
	4.1 Evaluation

	5 Results
	5.1 Threats to Validity

	6 Conclusion
	7 Code
	References

