Google Landmark Recognition and Retrieval Challenges

Maxence Dutreix, Nathan Hatch, Raghav Kuppan,
Pranav Shenoy Kasargod Pattanashetty, Anirudha Sundaresan

April 25, 2018

1 Project Summary

Identifying landmarks in photographs from around the world is an open research prob-
lem hindered by the availability of a worldwide dataset and the lack of annotations in
the existing datasets. The Google Landmark Recognition challenge, hosted by Kaggle,
came about as a result of these obstacles to landmark recognition research. The Google
Landmarks dataset [Noh et al., 2017] is one of the largest global landmark datasets to
date. It contains a much larger number of classes than ImageNet [Deng et al., 2009, and
its distribution of classes is highly imbalanced. This makes the dataset challenging to
work with. The goal of this project is to develop sufficient research methodologies that
can predict landmark labels directly from images, and help people better understand and
organize photo collections.

The challenge consists of two components: Recognition and Retrieval. For Recogni-
tion (i.e. classification), we use a recently introduced Deep Neural Network architecture
called ResNet to classify a given query image and come up with a confidence score for
that particular prediction. We employ transfer learning by pre-training our classifier on
ImageNet, and we use data augmentation techniques to ameliorate the skewness in the
dataset across classes. This achieves a classification accuracy of 62%.

For Retrieval, we reproduce a baseline image retrieval architecture called DELF [Noh
et al., 2017] and implement our own indexing system to handle the computational chal-
lenges of high-dimensional nearest-neighbor search. We also exploit the characteristics of
this particular dataset (namely, the tendency of landmarks to be large, salient objects)
by filtering results according to a saliency score. Our implementation achieves a mean
average precision (mAP) of 0.083, which puts us in 51st place in the Kaggle challenge.

2 Background

Deep learning has considerably improved the state of the art in image classification.
Using convolutional neural network (CNN) architectures like ResNet [He et al., 2016], it
is possible to achieve a top-5 classification accuracy of 96.53% on ImageNet [Deng et al.,
2009]. However, there are extensions and variations of these classification problems that
have not been entirely solved:

1. While large, ImageNet contains only 1000 classes. We would like computer vision
systems to be able to handle the much wider variety of classes that occur in the
natural world.



2. Deep learning still has trouble when the training datasets are very small. For
instance, we would like a computer vision system to be able to recognize a new
species of bird given only one or two training examples.

3. A related but less well-studied problem in computer vision is retrieval. Given an
image and a database, we would like to retrieve the images from the database which
are most similar to the query image.

In order to stimulate progress on these problems, Noh et al. [2017| recently released the
"Google Landmarks" dataset. The dataset contains ~1M images of ~15K landmarks
around the globe, with a very skewed distribution: some landmarks have thousands of
examples, but many have just one. Associated with this dataset are two current chal-
lenges on Kaggle. For the Landmark Recognition Challenge, the goal is to identify the
landmark in each query image (i.e. classification). For the Landmark Retrieval Chal-
lenge, the goal is to indicate which database images contain the same landmark as the
query image (i.e. retrieval).

For this project, we competed in both challenges. Section 3 gives details on our approach
and results for the Recognition Challenge. Section 4 does the same for the Retrieval
Challenge.

3 Recognition Challenge

Team Members : Raghav, Anirudha, Pranav

For Landmark Recognition, we adopted a Transfer Learning approach with Deep Resid-
ual Networks. Our dataset consists of 1,225,029 training images and 117,703 test images.
A sizeable portion of the image dataset has links pointing to missing images.

3.1 ResNets

The deep residual network, proposed by He et al. [2016], was arguably the most ground-
breaking work in the computer vision and deep learning community in the last few years.
The performance of image classification, object detection and face recognition, have been
boosted due to its powerful representational ability. ResNet allows us to train very deep
networks and still achieve compelling performance. A major limitation of deep networks
is the vanishing gradient problem — as the gradient is back-propagated to earlier layers,
repeated multiplication may make the gradient diminishingly small. As a result, perfor-
mance saturates. The core idea of a ResNet is to work around the vanishing gradient
problem by using the "identity shortcut connection" (a residual block, as shown in the
figure). Thus, a ResNet is similar to a feed-forward LSTM network without gates. The
networks that we have used for this challenge are the 18-layer and the 50-layer ResNets.


https://www.kaggle.com/c/landmark-recognition-challenge
https://www.kaggle.com/c/landmark-retrieval-challenge
https://www.kaggle.com/c/landmark-retrieval-challenge

X

Y

weight layer
F(x) ! relu
weight layer

X

identity

A Residual block

3.2 Data Loading & Augmentation

Prior to dataloading, we augment the data so that the training is more robust. Data
augmentation includes:

1. Extracting a 224x224 random crop of the 256x256 original images
2. Random horizontal flipping

For training the network, we split the training data into training and validation classes in
a 1:2 ratio. Some of the classes have a single image, in which case a slight distortion has
been introduced to the same image and copied into the validation set of the same class.
PyTorch takes in data according to a dataloader class that specifies the order in which
the data is to be read. This is also used to define the batch size, which also depends on
the system configuration.’

3.3 Transfer Learning

We append a new layer of 14,951 neurons to the ResNet model for the classes in our
dataset. There are broadly two ways to train this network on our dataset:

1. Freeze all layers of the network except the last layer and train on training data.
Only the last layer parameters (which was randomly initialized) will change.

2. Train the entire network with the dataset using the pretrained model for initializa-
tion. Here, the parameters of all the layers will change.

The first option usually works well if the dataset used to pretrain the model is very
similar to the dataset being worked on. However, training the entire network usually
works better although it requires more computational power. For this problem we used
the ResNet18 and the ResNet50 architectures trained with the ImageNet database.

We started with a ResNet18 model with weights frozen upto the penultimate layer. Due
to its poor performance, we upgraded to a ResNet50 model which led to an increase in
accuracy of over 100%. Unfreezing the weights led to a further increase in accuracy to
about 62% which was the highest we could achieve.



We used a Stochastic Gradient Descent with Momentum approach for optimization. The
batch size was calculated based on the memory of the system being used for the opti-
mization. A Cross Entropy Loss was used, which takes into account the closeness of a

prediction rather than just classification error. The training was done for 12 epochs on
an NVIDIA GTX 970.

Model Train Accuracy | Test Accuracy
ResNet18 26% 25.3%
ResNet50 (frozen weights) 52% 48%
ResNet50 (initialized weights) 63% 61.5%

4 Retrieval Challenge

Team Members : Nathan, Maxence

The goal of image retrieval is to match images from a database with query images pro-
vided by a user. In the case of the Google Landmarks Retrieval Challenge, the criterion
for a database match is that contains a landmark in common with the query image.
What is challenging about the landmarks dataset is its sheer size. It is not easy to fit one
million images in memory, let alone retrieve matches from among them rapidly enough to
maintain user satisfaction. However, the fact that we are dealing with three-dimensional
physical landmarks allows us to improve our results by imposing geometric structure on
the problem.

Prior work. As a baseline for the Retrieval Challenge, we implemented Deep Local
Features (DELF) [Noh et al., 2017]. This algorithm extracts features for the database
images using a fine-tuned CNN, reduces their dimensionality using principal component
analysis (PCA), and embeds the result in an indexing system for approximate nearest-
neighbors search. Given a query image, database images can then be ranked based on
how many of their features are neighbors of the query image’s features. All of these steps
contain tricks to make the giant dataset more tractable:

e The CNN produces thousands of features for each index image, most of which
are irrelevant to the future task of retrieval. To address this, DELF includes an
attention network which is trained to predict the relevance of each feature in a
landmark classification task. A feature is retained only if its attention score exceeds
a threshold value. After filtering, the index contains only ~ 200 million features.

e The CNN produces 1024-dimensional features. This is too many dimensions to
work with in an indexing system, so they are reduced to 40 dimensions using PCA.

e Given a query image, the indexing system must search for the nearest neighbors
of each feature of that image. In order to make 40-dimensional nearest-neighbors
search tractable, DELF uses a combination of product quantization (PQ) [Jegou
et al., 2011] and KDTrees.

Perhaps because of all of these shortcuts, the results contain many spurious matches. To
counteract this problem, DELF exploits the structure of the dataset by using a geomet-
ric verification step. For each image feature, DELF retains the 2-D coordinates of that

4



Figure 1: Retrieval results from our implementation of DELF. Query image is on the left of
each example. Circles represent features that had a match using nearest-neighbors search. Blue
lines represent the subset of those feature pairs that still had a match after fitting to an affine
transformation. Left: A good match. Right: A spurious match.

feature in the original image frame. Then, given a proposed matching between the index
and query features, DELF attempts to find an affine transformation on the feature co-
ordinates that achieves this matching. Any feature matches whose transformation error
exceeds a threshold are considered outliers and ignored when scoring the index image.
See Figure 1 for a visualization of this matching process.

Our modifications. The authors of DELF provided pre-trained networks and asso-
ciated code for feature extraction and attention filtering. They also released the code
for their geometric verification step. However, they did not release their indexing code.
Hence, we had to come up with our own way of building an index of ~ 200 million fea-
tures and performing nearest-neighbor search within it.

We decided to use KDTrees, which are a good data structure for efficient nearest-neighbors
search.! The time complexity of this search is exponential in the dimension of the data,
which in our case was 40. This was too big, so we modified the PCA step to further reduce
the feature dimensions to 10.2* With this modification, generating results for a query
image takes less than one second. This means we can generate a complete submission file
for the Kaggle challenge (100,000 query images) in about 24 hours.

Results. The Kaggle challenge is scored based on mean average precision (mAP). Our
results are summarized in the table below. "PCA-10" refers to the approach described
above. "PCA-10 (tuned)" refers to our second submission, wherein we tuned the hyper-
parameters of the nearest neighbor search (maximum distance, and number of neighbors
to find) to better match the lower dimensionality of the search space.

IThis part was mostly Nathan’s work.

2 Another reason for reducing PCA dimensions was to decrease the database size. In order to fit 200
million features into 32GB of RAM, each feature needs to be less than 160 bytes, even without taking
into account the rest of the pipeline.

SDELF circumvented this problem by using product quantization (PQ). However, given the time
constraints of this class project, we were not able to understand PQ well enough to implement it ourselves.



Method mAP
Random 0.000
PCA-10 0.068
PCA-10 (tuned) | 0.083

For comparison, the current leaders for the Retrieval Challenge have a mAP of 0.556,
and our submission is in 51st place.

Future work. Based on qualitative analysis of our retrieval results, we have a few ideas
for potential modifications.* Despite geometric verification, our results are cluttered by
a large number of spurious matches. For example, in Figure 1 (right), there are a large
number of matches in a relatively small region of the query image. With this insight, we
decided to implement an additional threshold during verification based on match region
saliency. We quantify saliency as the area of the convex hull of the match region, and we
reject images whose saliency score falls below a threshold value. Calculating the convex
hull is relatively cheap computationally, which preserves the tractability of our algorithm.
Furthermore, saliency is intuitively a reasonable metric for this dataset, since landmarks
are by definition salient objects. We have not had time to generate a full submission
file with this approach, but preliminary results on the Statue of Liberty query image in
Figure 1 showed an improvement in average precision from ~ 0.2 to ~ 0.5.

5 Conclusion and Future Work

The Recognition Challenge could have been tackled in many different ways. Using a
transfer learning approach with Deep Residual Networks, we were able to achieve an ac-
curacy of around 62%. Data augmentation was reasonably effective although storing the
extra images required a lot more memory. Given the size of the dataset and the limited
processing power available, this was a challenging constraint. We learned through several
crashes and memory leakages the difficulties in playing with large datasets. Hyperparam-
eter tuning, as discussed in class (and as it turned out in practice), is more "art" than
science. The way we did it was to plug parameters at random and observe a few epochs of
training. Ideally, we would have liked to have done a grid search, or even cross validation.

One future possibility is to use an R-CNN (Region based CNN), an architecture that
has been very successful in object detection applications and could have helped alleviate
the skewness of the dataset. This might provide better results than the ResNet.

The Retrieval Challenge is also an open problem. Our approach used a CNN to ex-
tract features, PCA to reduce their dimension, a KDTree for efficient nearest-neighbors
search, and geometric verification to filter out spurious matches. As with many ma-
chine learning applications, large datasets are both a blessing and a curse. Hopefully the
eventual winners will publish their approach for the benefit of the research community.

4This part was mostly Maxence’s work.



References

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest

neighbor search. IEEFE transactions on pattern analysis and machine intelligence, 33
(1):117-128, 2011.

Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale
image retrieval with attentive deep local features. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3456-3465, 2017.



	Project Summary
	Background
	Recognition Challenge
	ResNets
	Data Loading & Augmentation
	Transfer Learning

	Retrieval Challenge
	Conclusion and Future Work

